Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Sci Rep ; 14(1): 3758, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355768

ABSTRACT

Stereotactic ablative radiotherapy (SABR) is a highly effective treatment for patients with early-stage lung cancer who are inoperable. However, SABR causes benign radiation-induced lung injury (RILI) which appears as lesion growth on follow-up CT scans. This triggers the standard definition of progressive disease, yet cancer recurrence is not usually present, and distinguishing RILI from recurrence when a lesion appears to grow in size is critical but challenging. In this study, we developed a tool to do this using scans with apparent lesion growth after SABR from 68 patients. We performed bootstrapped experiments using radiomics and explored the use of multiple regions of interest (ROIs). The best model had an area under the receiver operating characteristic curve of 0.66 and used a sphere with a diameter equal to the lesion's longest axial measurement as the ROI. We also investigated the effect of using inter-feature and volume correlation filters and found that the former was detrimental to performance and that the latter had no effect. We also found that the radiomics features ranked as highly important by the model were significantly correlated with outcomes. These findings represent a key step in developing a tool that can help determine who would benefit from follow-up invasive interventions when a SABR-treated lesion increases in size, which could help provide better treatment for patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Injury , Lung Neoplasms , Radiation Injuries , Radiosurgery , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Lung Injury/diagnostic imaging , Lung Injury/etiology , Response Evaluation Criteria in Solid Tumors , Radiomics , Neoplasm Recurrence, Local/pathology , Radiation Injuries/etiology , Tomography, X-Ray Computed , Radiosurgery/adverse effects
2.
Med Phys ; 51(5): 3510-3520, 2024 May.
Article in English | MEDLINE | ID: mdl-38100260

ABSTRACT

BACKGROUND: Patients with oropharyngeal cancer (OPC) treated with chemoradiation can experience weight loss and tumor shrinkage, altering the prescribed treatment. Treatment replanning ensures patients do not receive excessive doses to normal tissue. However, it is a time- and resource-intensive process, as it takes 1 to 2 weeks to acquire a new treatment plan, and during this time, overtreatment of normal tissues could lead to increased toxicities. Currently, there are limited prognostic factors to determine which patients will require a replan. There remains an unmet need for predictive models to assist in identifying patients who could benefit from the knowledge of a replan prior to treatment. PURPOSE: We aimed to develop and evaluate a CT-based radiomic model, integrating clinical and dosimetric information, to predict the need for a replan prior to treatment. METHODS: A dataset of patients (n = 315) with OPC treated with chemoradiation was used for this study. The dataset was split into independent training (n = 220) and testing (n = 95) datasets. Tumor volumes and organs at risk (OARs) were contoured on planning CT images. PyRadiomics was used to compute radiomic image features (n = 1218) on the original and filtered images from each of the primary tumor, nodal volumes, and ipsilateral and contralateral parotid glands. Nine clinical features and nine dose features extracted from the OARs were collected and those significantly (p < 0.05) associated with the need for a replan in the training dataset were used in a baseline model. Random forest feature selection was applied to select the optimal radiomic features to predict replanning. Logistic regression, Naïve Bayes, support vector machine, and random forest classifiers were built using the non-correlated selected radiomic, clinical, and dose features on the training dataset and performance was assessed in the testing dataset. The area under the curve (AUC) was used to assess the prognostic value. RESULTS: A total of 78 patients (25%) required a replan. Smoking status, nodal stage, base of tongue subsite, and larynx mean dose were found to be significantly associated with the need for a replan in the training dataset and incorporated into the baseline model, as well as into the combined models. Five predictive radiomic features were selected (one nodal volume, one primary tumor, two ipsilateral and one contralateral parotid gland). The baseline model comprised of clinical and dose features alone achieved an AUC of 0.66 [95% CI: 0.51-0.79] in the testing dataset. The random forest classifier was the top-performing radiomics model and achieved an AUC of 0.82 [0.75-0.89] in the training dataset and an AUC of 0.78 [0.68-0.87] in the testing dataset, which significantly outperformed the baseline model (p = 0.023, testing dataset). CONCLUSIONS: This is the first study to use radiomics from the primary tumor, nodal volumes, and parotid glands for the prediction of replanning for patients with OPC. Radiomic features augmented clinical and dose features for predicting the need for a replan in our testing dataset. Once validated, this model has the potential to assist physicians in identifying patients that may benefit from a replan, allowing for better resource allocation and reduced toxicities.


Subject(s)
Oropharyngeal Neoplasms , Radiometry , Tomography, X-Ray Computed , Oropharyngeal Neoplasms/diagnostic imaging , Oropharyngeal Neoplasms/radiotherapy , Oropharyngeal Neoplasms/therapy , Humans , Radiotherapy Dosage , Organs at Risk/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Chemoradiotherapy , Male , Female , Middle Aged , Tumor Burden/radiation effects , Aged , Radiomics
3.
Radiother Oncol ; 178: 109434, 2023 01.
Article in English | MEDLINE | ID: mdl-36464179

ABSTRACT

BACKGROUND AND PURPOSE: Radiomics is a high-throughput approach that allows for quantitative analysis of imaging data for prognostic applications. Medical images are used in oropharyngeal cancer (OPC) diagnosis and treatment planning and these images may contain prognostic information allowing for treatment personalization. However, the lack of validated models has been a barrier to the translation of radiomic research to the clinic. We hypothesize that a previously developed radiomics model for risk stratification in OPC can be validated in a local dataset. MATERIALS AND METHODS: The radiomics signature predicting overall survival incorporates features derived from the primary gross tumor volume of OPC patients treated with radiation +/- chemotherapy at a single institution (n = 343). Model fit, calibration, discrimination, and utility were evaluated. The signature was compared with a clinical model using overall stage and a model incorporating both radiomics and clinical data. A model detecting dental artifacts on computed tomography images was also validated. RESULTS: The radiomics signature had a Concordance index (C-index) of 0.66 comparable to the clinical model's C-index of 0.65. The combined model significantly outperformed (C-index of 0.69, p = 0.024) the clinical model, suggesting that radiomics provides added value. The dental artifact model demonstrated strong ability in detecting dental artifacts with an area under the curve of 0.87. CONCLUSION: This work demonstrates model performance comparable to previous validation work and provides a framework for future independent and multi-center validation efforts. With sufficient validation, radiomic models have the potential to improve traditional systems of risk stratification, treatment personalization and patient outcomes.


Subject(s)
Oropharyngeal Neoplasms , Tomography, X-Ray Computed , Humans , Prognosis , Oropharyngeal Neoplasms/diagnostic imaging , Oropharyngeal Neoplasms/therapy , Retrospective Studies
4.
PLoS One ; 17(11): e0278135, 2022.
Article in English | MEDLINE | ID: mdl-36441690

ABSTRACT

OBJECTIVES: In those undergoing treatment for head and neck cancer (HNC), sarcopenia is a strong prognostic factor for outcomes and mortality. This review identified working definitions and methods used to objectively assess sarcopenia in HNC. METHOD: The scoping review was performed in accordance with Arksey and O'Malley's five-stage methodology and the Joanna Briggs Institute guidelines. INFORMATION SOURCES: Eligible studies were identified using MEDLINE, Embase, Scopus, Cochrane Library, and CINAHL databases. STUDY SELECTION: Inclusion criteria represented studies of adult HNC patients in which sarcopenia was listed as an outcome, full-text articles written in English, and empirical research studies with a quantitative design. DATA EXTRACTION: Eligible studies were assessed using a proprietary data extraction form. General information, article details and characteristics, and details related to the concept of the scoping review were extracted in an iterative process. RESULTS: Seventy-six studies published internationally from 2016 to 2021 on sarcopenia in HNC were included. The majority were retrospective (n = 56; 74%) and the prevalence of sarcopenia ranged from 3.8% to 78.7%. Approximately two-thirds of studies used computed tomography (CT) to assess sarcopenia. Skeletal muscle index (SMI) at the third lumbar vertebra (L3) (n = 53; 70%) was the most prevalent metric used to identify sarcopenia, followed by SMI at the third cervical vertebra (C3) (n = 4; 5%). CONCLUSIONS: Currently, the most effective strategy to assess sarcopenia in HNC depends on several factors, including access to resources, patient and treatment characteristics, and the prognostic significance of outcomes used to represent sarcopenia. Skeletal muscle mass (SMM) measured at C3 may represent a practical, precise, and cost-effective biomarker for the detection of sarcopenia. However, combining SMM measurements at C3 with other sarcopenic parameters-including muscle strength and physical performance-may provide a more accurate risk profile for sarcopenia assessment and allow for a greater understanding of this condition in HNC.


Subject(s)
Head and Neck Neoplasms , Sarcopenia , Adult , Humans , Sarcopenia/diagnosis , Sarcopenia/epidemiology , Sarcopenia/etiology , Retrospective Studies , Head and Neck Neoplasms/complications , Muscle, Skeletal , Muscle Strength
5.
J Med Imaging (Bellingham) ; 9(6): 066001, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36388142

ABSTRACT

Purpose: We developed a model integrating multimodal quantitative imaging features from tumor and nontumor regions, qualitative features, and clinical data to improve the risk stratification of patients with resectable non-small cell lung cancer (NSCLC). Approach: We retrospectively analyzed 135 patients [mean age, 69 years (43 to 87, range); 100 male patients and 35 female patients] with NSCLC who underwent upfront surgical resection between 2008 and 2012. The tumor and peritumoral regions on both preoperative CT and FDG PET-CT and the vertebral bodies L3 to L5 on FDG PET were segmented to assess the tumor and bone marrow uptake, respectively. Radiomic features were extracted and combined with clinical and CT qualitative features. A random survival forest model was developed using the top-performing features to predict the time to recurrence/progression in the training cohort ( n = 101 ), validated in the testing cohort ( n = 34 ) using the concordance, and compared with a stage-only model. Patients were stratified into high- and low-risks of recurrence/progression using Kaplan-Meier analysis. Results: The model, consisting of stage, three wavelet texture features, and three wavelet first-order features, achieved a concordance of 0.78 and 0.76 in the training and testing cohorts, respectively, significantly outperforming the baseline stage-only model results of 0.67 ( p < 0.005 ) and 0.60 ( p = 0.008 ), respectively. Patients at high- and low-risks of recurrence/progression were significantly stratified in both the training ( p < 0.005 ) and the testing ( p = 0.03 ) cohorts. Conclusions: Our radiomic model, consisting of stage and tumor, peritumoral, and bone marrow features from CT and FDG PET-CT significantly stratified patients into low- and high-risk of recurrence/progression.

6.
PLoS One ; 17(1): e0262639, 2022.
Article in English | MEDLINE | ID: mdl-35061813

ABSTRACT

One important metric of a radiologist's visibility and influence is their ability to participate in discussion within their community. The goal of our study was to compare the participation level of men and women in scientific discussions at the annual meeting of the Radiological Society of North America (RSNA). Eleven volunteers collected participation data by gender in 59 sessions (286 presentations) at the 2018 RSNA meeting. Data was analyzed using a combination of Chi-squared, paired Wilcoxon signed-rank and T-test. Of all RSNA professional attendees at the RSNA, 68% were men and 32% were women. Of the 2869 presentations listed in the program, 65% were presented by men and 35% were presented by women. Of the 286 presentations in our sample, 177 (61.8%) were presented by men and 109 (38.1%) were presented by women. Of these 286 presentations, 81 (63%) were moderated by men and 47 (37%) were moderated by women. From the audience, 190 male attendees participated in 134 question-and-answer (Q&A) sessions following presentations and 58 female attendees participated in 52 Q&A sessions (P<0.001). Female attendees who did participate in Q&A sessions talked for a significantly shorter period of time (mean 7.14 ± 17.7 seconds, median 0) compared to male attendees (28.7 ± 29.6 seconds, median 16; P<0.001). Overall, our findings demonstrate that women participated less than men in the Q&A sessions at RSNA 2018, and talked for a shorter period of time. The fact that women were outnumbered among their male peers may explain the difference in behavior by gender.


Subject(s)
Congresses as Topic/statistics & numerical data , Radiologists/statistics & numerical data , Sexism/statistics & numerical data , Career Mobility , Female , Humans , Male , Radiology/statistics & numerical data , Sex Factors
7.
Neurosurgery ; 89(3): 509-517, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34131749

ABSTRACT

BACKGROUND: Clinicoradiologic differentiation between benign and malignant peripheral nerve sheath tumors (PNSTs) has important management implications. OBJECTIVE: To develop and evaluate machine-learning approaches to differentiate benign from malignant PNSTs. METHODS: We identified PNSTs treated at 3 institutions and extracted high-dimensional radiomics features from gadolinium-enhanced, T1-weighted magnetic resonance imaging (MRI) sequences. Training and test sets were selected randomly in a 70:30 ratio. A total of 900 image features were automatically extracted using the PyRadiomics package from Quantitative Imaging Feature Pipeline. Clinical data including age, sex, neurogenetic syndrome presence, spontaneous pain, and motor deficit were also incorporated. Features were selected using sparse regression analysis and retained features were further refined by gradient boost modeling to optimize the area under the curve (AUC) for diagnosis. We evaluated the performance of radiomics-based classifiers with and without clinical features and compared performance against human readers. RESULTS: A total of 95 malignant and 171 benign PNSTs were included. The final classifier model included 21 imaging and clinical features. Sensitivity, specificity, and AUC of 0.676, 0.882, and 0.845, respectively, were achieved on the test set. Using imaging and clinical features, human experts collectively achieved sensitivity, specificity, and AUC of 0.786, 0.431, and 0.624, respectively. The AUC of the classifier was statistically better than expert humans (P = .002). Expert humans were not statistically better than the no-information rate, whereas the classifier was (P = .001). CONCLUSION: Radiomics-based machine learning using routine MRI sequences and clinical features can aid in evaluation of PNSTs. Further improvement may be achieved by incorporating additional imaging sequences and clinical variables into future models.


Subject(s)
Nerve Sheath Neoplasms , Neurofibrosarcoma , Humans , Machine Learning , Magnetic Resonance Imaging , Nerve Sheath Neoplasms/diagnostic imaging , Retrospective Studies
8.
Neurooncol Adv ; 3(1): vdab042, 2021.
Article in English | MEDLINE | ID: mdl-33977272

ABSTRACT

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are lethal pediatric brain tumors. Presently, MRI is the mainstay of disease diagnosis and surveillance. We identify clinically significant computational features from MRI and create a prognostic machine learning model. METHODS: We isolated tumor volumes of T1-post-contrast (T1) and T2-weighted (T2) MRIs from 177 treatment-naïve DIPG patients from an international cohort for model training and testing. The Quantitative Image Feature Pipeline and PyRadiomics was used for feature extraction. Ten-fold cross-validation of least absolute shrinkage and selection operator Cox regression selected optimal features to predict overall survival in the training dataset and tested in the independent testing dataset. We analyzed model performance using clinical variables (age at diagnosis and sex) only, radiomics only, and radiomics plus clinical variables. RESULTS: All selected features were intensity and texture-based on the wavelet-filtered images (3 T1 gray-level co-occurrence matrix (GLCM) texture features, T2 GLCM texture feature, and T2 first-order mean). This multivariable Cox model demonstrated a concordance of 0.68 (95% CI: 0.61-0.74) in the training dataset, significantly outperforming the clinical-only model (C = 0.57 [95% CI: 0.49-0.64]). Adding clinical features to radiomics slightly improved performance (C = 0.70 [95% CI: 0.64-0.77]). The combined radiomics and clinical model was validated in the independent testing dataset (C = 0.59 [95% CI: 0.51-0.67], Noether's test P = .02). CONCLUSIONS: In this international study, we demonstrate the use of radiomic signatures to create a machine learning model for DIPG prognostication. Standardized, quantitative approaches that objectively measure DIPG changes, including computational MRI evaluation, could offer new approaches to assessing tumor phenotype and serve a future role for optimizing clinical trial eligibility and tumor surveillance.

9.
Can Assoc Radiol J ; 72(1): 73-85, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32735452

ABSTRACT

Artificial intelligence (AI)-based models have become a growing area of interest in predictive medicine and have the potential to aid physician decision-making to improve patient outcomes. Imaging and radiomics play an increasingly important role in these models. This review summarizes recent developments in the field of radiomics for AI in head and neck cancer. Prediction models for oncologic outcomes, treatment toxicity, and pathological findings have all been created. Exploratory studies are promising; however, validation studies that demonstrate consistency, reproducibility, and prognostic impact remain uncommon. Prospective clinical trials with standardized procedures are required for clinical translation.


Subject(s)
Artificial Intelligence , Diagnostic Imaging/methods , Head and Neck Neoplasms/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Humans , Prognosis
10.
Can Assoc Radiol J ; 72(1): 86-97, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32735493

ABSTRACT

Lung cancer remains the most common cause of cancer death worldwide. Recent advances in lung cancer screening, radiotherapy, surgical techniques, and systemic therapy have led to increasing complexity in diagnosis, treatment decision-making, and assessment of recurrence. Artificial intelligence (AI)-based prediction models are being developed to address these issues and may have a future role in screening, diagnosis, treatment selection, and decision-making around salvage therapy. Imaging plays an essential role in all components of lung cancer management and has the potential to play a key role in AI applications. Artificial intelligence has demonstrated value in prognostic biomarker discovery in lung cancer diagnosis, treatment, and response assessment, putting it at the forefront of the next phase of personalized medicine. However, although exploratory studies demonstrate potential utility, there is a need for rigorous validation and standardization before AI can be utilized in clinical decision-making. In this review, we will provide a summary of the current literature implementing AI for outcome prediction in lung cancer. We will describe the anticipated impact of AI on the management of patients with lung cancer and discuss the challenges of clinical implementation of these techniques.


Subject(s)
Artificial Intelligence , Clinical Decision-Making/methods , Diagnostic Imaging/methods , Image Interpretation, Computer-Assisted/methods , Lung Neoplasms/diagnostic imaging , Humans , Lung/diagnostic imaging
11.
Radiat Oncol ; 15(1): 261, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33168055

ABSTRACT

BACKGROUND: Transoral surgery (TOS), particularly transoral robotic surgery (TORS) has become the preferred modality in the United States for the treatment of early stage oropharyngeal cancer, largely due to assumptions of fewer toxicities and improved quality of life compared to primary radiotherapy (RT). However, these assumptions are based on retrospective analysis, a subset of which utilize primary RT groups not limited to T1-2 stage tumors for which transoral robotic surgery is FDA approved. Thus, there is potential for underestimating survival and overestimating toxicity, including treatment related mortality, in primary RT. METHODS: Consecutive cases of early T-stage (T1-T2) oropharyngeal cancer presenting to the London Health Sciences Centre between 2014 and 2018 treated with RT or chemoradiation (CRT) were reviewed. Patient demographics, treatment details, survival outcomes and toxicity were collected. Toxicities were retrospectively graded using the Common Terminology Criteria for Adverse Events criteria. RESULTS: A total of 198 patients were identified, of which 82% were male and 73% were HPV-positive. Sixty-eight percent of patients experienced a grade 2 toxicity, 48% a grade 3 and 4% a grade 4. The most frequent toxicities were dysphagia, neutropenia and ototoxicity. The rates of gastrostomy tube dependence at 1 and 2 years were 2.5% and 1% respectively. There were no grade 5 (fatal) toxicities. HPV-positive patients experienced improved 5-year overall survival (86% vs 64%, p = 0.0026). CONCLUSIONS: Primary RT or CRT provides outstanding survival for early T-stage disease, with low rates of severe toxicity and feeding tube dependence. This study provides a reference for comparison for patients treated with primary transoral surgery.


Subject(s)
Oropharyngeal Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Aged , Chemoradiotherapy, Adjuvant , Female , Humans , Male , Middle Aged , Neoplasm Staging , Oropharyngeal Neoplasms/mortality , Oropharyngeal Neoplasms/pathology , Radiotherapy, Intensity-Modulated/adverse effects , Retrospective Studies , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/pathology , Tertiary Healthcare
12.
Tomography ; 6(2): 111-117, 2020 06.
Article in English | MEDLINE | ID: mdl-32548287

ABSTRACT

Several institutions have developed image feature extraction software to compute quantitative descriptors of medical images for radiomics analyses. With radiomics increasingly proposed for use in research and clinical contexts, new techniques are necessary for standardizing and replicating radiomics findings across software implementations. We have developed a software toolkit for the creation of 3D digital reference objects with customizable size, shape, intensity, texture, and margin sharpness values. Using user-supplied input parameters, these objects are defined mathematically as continuous functions, discretized, and then saved as DICOM objects. Here, we present the definition of these objects, parameterized derivations of a subset of their radiomics values, computer code for object generation, example use cases, and a user-downloadable sample collection used for the examples cited in this paper.


Subject(s)
Image Processing, Computer-Assisted , Radiometry , Software , Radiometry/standards , Reference Standards
13.
Med Phys ; 47(5): e185-e202, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32418336

ABSTRACT

Radiomics is an emerging area in quantitative image analysis that aims to relate large-scale extracted imaging information to clinical and biological endpoints. The development of quantitative imaging methods along with machine learning has enabled the opportunity to move data science research towards translation for more personalized cancer treatments. Accumulating evidence has indeed demonstrated that noninvasive advanced imaging analytics, that is, radiomics, can reveal key components of tumor phenotype for multiple three-dimensional lesions at multiple time points over and beyond the course of treatment. These developments in the use of CT, PET, US, and MR imaging could augment patient stratification and prognostication buttressing emerging targeted therapeutic approaches. In recent years, deep learning architectures have demonstrated their tremendous potential for image segmentation, reconstruction, recognition, and classification. Many powerful open-source and commercial platforms are currently available to embark in new research areas of radiomics. Quantitative imaging research, however, is complex and key statistical principles should be followed to realize its full potential. The field of radiomics, in particular, requires a renewed focus on optimal study design/reporting practices and standardization of image acquisition, feature calculation, and rigorous statistical analysis for the field to move forward. In this article, the role of machine and deep learning as a major computational vehicle for advanced model building of radiomics-based signatures or classifiers, and diverse clinical applications, working principles, research opportunities, and available computational platforms for radiomics will be reviewed with examples drawn primarily from oncology. We also address issues related to common applications in medical physics, such as standardization, feature extraction, model building, and validation.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted/methods , Humans , Neoplasms/diagnostic imaging
14.
J Med Imaging (Bellingham) ; 7(4): 042803, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32206688

ABSTRACT

Quantitative image features that can be computed from medical images are proving to be valuable biomarkers of underlying cancer biology that can be used for assessing treatment response and predicting clinical outcomes. However, validation and eventual clinical implementation of these tools is challenging due to the absence of shared software algorithms, architectures, and the tools required for computing, comparing, evaluating, and disseminating predictive models. Similarly, researchers need to have programming expertise in order to complete these tasks. The quantitative image feature pipeline (QIFP) is an open-source, web-based, graphical user interface (GUI) of configurable quantitative image-processing pipelines for both planar (two-dimensional) and volumetric (three-dimensional) medical images. This allows researchers and clinicians a GUI-driven approach to process and analyze images, without having to write any software code. The QIFP allows users to upload a repository of linked imaging, segmentation, and clinical data or access publicly available datasets (e.g., The Cancer Imaging Archive) through direct links. Researchers have access to a library of file conversion, segmentation, quantitative image feature extraction, and machine learning algorithms. An interface is also provided to allow users to upload their own algorithms in Docker containers. The QIFP gives researchers the tools and infrastructure for the assessment and development of new imaging biomarkers and the ability to use them for single and multicenter clinical and virtual clinical trials.

15.
Radiology ; 293(2): 451-459, 2019 11.
Article in English | MEDLINE | ID: mdl-31526257

ABSTRACT

Background Primary tumor maximum standardized uptake value is a prognostic marker for non-small cell lung cancer. In the setting of malignancy, bone marrow activity from fluorine 18-fluorodeoxyglucose (FDG) PET may be informative for clinical risk stratification. Purpose To determine whether integrating FDG PET radiomic features of the primary tumor, tumor penumbra, and bone marrow identifies lung cancer disease-free survival more accurately than clinical features alone. Materials and Methods Patients were retrospectively analyzed from two distinct cohorts collected between 2008 and 2016. Each tumor, its surrounding penumbra, and bone marrow from the L3-L5 vertebral bodies was contoured on pretreatment FDG PET/CT images. There were 156 bone marrow and 512 tumor and penumbra radiomic features computed from the PET series. Randomized sparse Cox regression by least absolute shrinkage and selection operator identified features that predicted disease-free survival in the training cohort. Cox proportional hazards models were built and locked in the training cohort, then evaluated in an independent cohort for temporal validation. Results There were 227 patients analyzed; 136 for training (mean age, 69 years ± 9 [standard deviation]; 101 men) and 91 for temporal validation (mean age, 72 years ± 10; 91 men). The top clinical model included stage; adding tumor region features alone improved outcome prediction (log likelihood, -158 vs -152; P = .007). Adding bone marrow features continued to improve performance (log likelihood, -158 vs -145; P = .001). The top model integrated stage, two bone marrow texture features, one tumor with penumbra texture feature, and two penumbra texture features (concordance, 0.78; 95% confidence interval: 0.70, 0.85; P < .001). This fully integrated model was a predictor of poor outcome in the independent cohort (concordance, 0.72; 95% confidence interval: 0.64, 0.80; P < .001) and a binary score stratified patients into high and low risk of poor outcome (P < .001). Conclusion A model that includes pretreatment fluorine 18-fluorodeoxyglucose PET texture features from the primary tumor, tumor penumbra, and bone marrow predicts disease-free survival of patients with non-small cell lung cancer more accurately than clinical features alone. © RSNA, 2019 Online supplemental material is available for this article.


Subject(s)
Bone Marrow/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography , Aged , Bone Marrow/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Female , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/pathology , Male , Predictive Value of Tests , Prognosis , Radiopharmaceuticals , Retrospective Studies , Risk Assessment
16.
Tomography ; 5(1): 145-153, 2019 03.
Article in English | MEDLINE | ID: mdl-30854452

ABSTRACT

We identified computational imaging features on 18F-fluorodeoxyglucose positron emission tomography (PET) that predict recurrence/progression in non-small cell lung cancer (NSCLC). We retrospectively identified 291 patients with NSCLC from 2 prospectively acquired cohorts (training, n = 145; validation, n = 146). We contoured the metabolic tumor volume (MTV) on all pretreatment PET images and added a 3-dimensional penumbra region that extended outward 1 cm from the tumor surface. We generated 512 radiomics features, selected 435 features based on robustness to contour variations, and then applied randomized sparse regression (LASSO) to identify features that predicted time to recurrence in the training cohort. We built Cox proportional hazards models in the training cohort and independently evaluated the models in the validation cohort. Two features including stage and a MTV plus penumbra texture feature were selected by LASSO. Both features were significant univariate predictors, with stage being the best predictor (hazard ratio [HR] = 2.15 [95% confidence interval (CI): 1.56-2.95], P < .001). However, adding the MTV plus penumbra texture feature to stage significantly improved prediction (P = .006). This multivariate model was a significant predictor of time to recurrence in the training cohort (concordance = 0.74 [95% CI: 0.66-0.81], P < .001) that was validated in a separate validation cohort (concordance = 0.74 [95% CI: 0.67-0.81], P < .001). A combined radiomics and clinical model improved NSCLC recurrence prediction. FDG PET radiomic features may be useful biomarkers for lung cancer prognosis and add clinical utility for risk stratification.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Neoplasm Recurrence, Local/diagnostic imaging , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Female , Fluorodeoxyglucose F18 , Humans , Image Interpretation, Computer-Assisted/methods , Kaplan-Meier Estimate , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Observer Variation , Positron Emission Tomography Computed Tomography/methods , Predictive Value of Tests , Prognosis , Proportional Hazards Models , Radiopharmaceuticals , Reproducibility of Results , Retrospective Studies , Risk Assessment/methods
17.
Int J Radiat Oncol Biol Phys ; 95(5): 1545-1546, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27479728
18.
Br J Radiol ; 89(1065): 20160113, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27245137

ABSTRACT

The use of stereotactic ablative radiotherapy (SABR) for the treatment of primary lung cancer and metastatic disease is rapidly increasing. However, the presence of benign fibrotic changes on CT imaging makes response assessment following SABR a challenge, as these changes develop with an appearance similar to tumour recurrence. Misclassification of benign fibrosis as local recurrence has resulted in unnecessary interventions, including biopsy and surgical resection. Response evaluation criteria in solid tumours (RECIST) are widely used as a universal set of guidelines to assess tumour response following treatment. However, in the context of non-spherical and irregular post-SABR fibrotic changes, the RECIST criteria can have several limitations. Positron emission tomography can also play a role in response assessment following SABR; however, false-positive results in regions of inflammatory lung post-SABR can be a major clinical issue and optimal standardized uptake values to distinguish fibrosis and recurrence have not been determined. Although validated CT high-risk features show a high sensitivity and specificity for predicting recurrence, most recurrences are not detected until more than 1-year post-treatment. Advanced quantitative radiomic analysis on CT imaging has demonstrated promise in distinguishing benign fibrotic changes from local recurrence at earlier time points, and more accurately, than physician assessment. Overall, the use of RECIST alone may prove inferior to novel metrics of assessing response.


Subject(s)
Lung Neoplasms/radiotherapy , Radiosurgery/methods , Ablation Techniques , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/diagnostic imaging , Neoplasm Recurrence, Local/etiology , Observer Variation , Oncologists/standards , Perfusion Imaging/methods , Positron Emission Tomography Computed Tomography/methods , Radiologists/standards , Radiopharmaceuticals , Response Evaluation Criteria in Solid Tumors , Tomography, X-Ray Computed/methods , Treatment Outcome
19.
Int J Radiat Oncol Biol Phys ; 94(5): 1121-8, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26907916

ABSTRACT

PURPOSE: Stereotactic ablative radiation therapy (SABR) is a guideline-specified treatment option for early-stage lung cancer. However, significant posttreatment fibrosis can occur and obfuscate the detection of local recurrence. The goal of this study was to assess physician ability to detect timely local recurrence and to compare physician performance with a radiomics tool. METHODS AND MATERIALS: Posttreatment computed tomography (CT) scans (n=182) from 45 patients treated with SABR (15 with local recurrence matched to 30 with no local recurrence) were used to measure physician and radiomic performance in assessing response. Scans were individually scored by 3 thoracic radiation oncologists and 3 thoracic radiologists, all of whom were blinded to clinical outcomes. Radiomic features were extracted from the same images. Performances of the physician assessors and the radiomics signature were compared. RESULTS: When taking into account all CT scans during the whole follow-up period, median sensitivity for physician assessment of local recurrence was 83% (range, 67%-100%), and specificity was 75% (range, 67%-87%), with only moderate interobserver agreement (κ = 0.54) and a median time to detection of recurrence of 15.5 months. When determining the early prediction of recurrence within <6 months after SABR, physicians assessed the majority of images as benign injury/no recurrence, with a mean error of 35%, false positive rate (FPR) of 1%, and false negative rate (FNR) of 99%. At the same time point, a radiomic signature consisting of 5 image-appearance features demonstrated excellent discrimination, with an area under the receiver operating characteristic curve of 0.85, classification error of 24%, FPR of 24%, and FNR of 23%. CONCLUSIONS: These results suggest that radiomics can detect early changes associated with local recurrence that are not typically considered by physicians. This decision support system could potentially allow for early salvage therapy of patients with local recurrence after SABR.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Clinical Competence , Lung Neoplasms/diagnostic imaging , Neoplasm Recurrence, Local/diagnostic imaging , Radiation Oncology , Radiology , Radiosurgery , Tomography, X-Ray Computed , Aged , Aged, 80 and over , Area Under Curve , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , Female , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Male , Middle Aged , Neoplasm Recurrence, Local/pathology , Observer Variation , Positron-Emission Tomography , ROC Curve , Radiopharmaceuticals , Response Evaluation Criteria in Solid Tumors , Sensitivity and Specificity , Time Factors
20.
J Med Imaging (Bellingham) ; 2(4): 041010, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26835492

ABSTRACT

Benign radiation-induced lung injury (RILI) is not uncommon following stereotactic ablative radiotherapy (SABR) for lung cancer and can be difficult to differentiate from tumor recurrence on follow-up imaging. We previously showed the ability of computed tomography (CT) texture analysis to predict recurrence. The aim of this study was to evaluate and compare the accuracy of recurrence prediction using manual region-of-interest segmentation to that of a semiautomatic approach. We analyzed 22 patients treated for 24 lesions (11 recurrences, 13 RILI). Consolidative and ground-glass opacity (GGO) regions were manually delineated. The longest axial diameter of the consolidative region on each post-SABR CT image was measured. This line segment is routinely obtained as part of the clinical imaging workflow and was used as input to automatically delineate the consolidative region and subsequently derive a periconsolidative region to sample GGO tissue. Texture features were calculated, and at two to five months post-SABR, the entropy texture measure within the semiautomatic segmentations showed prediction accuracies [areas under the receiver operating characteristic curve (AUC): 0.70 to 0.73] similar to those of manual GGO segmentations (AUC: 0.64). After integration into the clinical workflow, this decision support system has the potential to support earlier salvage for patients with recurrence and fewer investigations of benign RILI.

SELECTION OF CITATIONS
SEARCH DETAIL
...